Nuclear Reactions for Astrophysics at NIF Using Radiochemistry "Thoughts"

Anna Hayes, P. Bradley, G.Hale, A. Heger, J. Jungman, R. Korzekwa (Theory)

G. Grim, R. Rundberg, J. Wilhelmy

(Expt)

High Fluence of both Neutrons and Charged-Particles Induce Reactions off the line of stability

Allows multiple reactions on materials loaded in the shell => Reactions on short-lived unstable targets

 First neutron reactions to get off line of stability (n,2n), (n,3n) or double (n,2n) for proton-rich (n,γ) for neutron-rich

• Followed by charged-particle reactions of interest e.g., (p,γ) , (p,α) , ...

<u>Caveat:</u> NIF design physicists warn that doping is possible *iff* achieve robust ignition

Currently Developing Diagnostic for Mix and Instabilities in Ignited NIF Capsules

Scheme based on using double reactions: n+t → t*(knock-on)

t+shell \longrightarrow X(β -)

Detect

Triton interactions with shell material ~100mb. Mix diagnosed by observing beta decays of resulting isotopes, after target disassembly.

Triton + 9 Be ablator (t, α) reactions distinguish different types of mix.

t+ 9 Be $\rightarrow \alpha$ + 8 Li + β (13 MeV, 840 ms)

NIF full Yield - 8Li production

No Mix Chunk Mix Atomic Mix 1x10¹² 3x10¹² 1x10¹⁴

Debris collector & β counter.

Thoughts on using similar techniques for Nuclear Astrophysics

- How far off the line of stability can we go?
- What can we do that we can't do at a radioactive ion beam facility?
- How do we detect the reactants?
- How many reactions do we need for collection/detection?
- Which reactions are feasible?
- How do extrapolate from NIF flux-average the cross section to those needed of astrophysicist?

Physics Parameters for Ignited Capsule

Examined a high yield DT capsule with ⁹Be(.9%Cu) ablator/shell

Clean yield 16.65 MJ => $6x10^{18}$ DT reactions, ~ $6x10^{18}$ neutrons

shell

DT Ice

DT Gas

~ 900 um

$$< pr> $_{shell} = 0.25 \text{ g/cm}^2$
range = .1 - .6 g/cm²$$

$$<\rho r>_{capsule} = 1.2 g/cm^2$$

Also examined mixing between shell and DT

Mix varied as a parameter - the mixing length

$$L = \alpha \int \left| u_{DT}(r,t) - u_{shell}(r,t) \right| dt$$

$$\alpha$$
=0.06 => Y= 9.5 MJ

$$\alpha$$
=0.12 => Y= 5.2 MJ

Neutron Spectrum

Neutron spectra at DT fuel/shell interface

Different yields and shell/fuel mixing result in similarly shaped spectra

Neutron Reactions

(n,2n) reactions best potential Typical cross sections ~ 1b at 14 MeV

Single $(n,2n) \sim 10^{16}$ reactions Double $(n,2n) \sim 10^{12}$ -10¹³ reactions

Some heavy nuclei (n,3n) ~ 1b@ 14 MeV

However, for many nuclei of interest neutron binding is high => (n,2n) threshold > 14 MeV

$$10^{16} \longrightarrow \sim 10^{13}$$
 or less

Other Neutron Reactions also Possible

- ➤ The so-called direct-semi-direct contribution to neutron capture yields a capture cross sections ~ 1mb @ 14 MeV => ~ 5x 10¹³ reactions
- Inelastic (n,n') scattering to isomers
 => 3x10¹⁵

Threshold for (n,3n) is often too high to get a significant number of reactions

➤ Double (n,2n) often better

Charged Particle Fluences

Main Reactions

```
d + t → n(14.1) + {}^{4}He(3.5)

d + d → n(2.45) + {}^{3}He(0.82)

d + d → p(3.02) + t(1.01)

t + t → 2n + {}^{4}He (spectrum of energies)

d + {}^{3}He → p(14.7) + {}^{4}He(3.65)

t + {}^{3}He → d(9.55) + {}^{4}He(4.77)
```

Thermal Broadening

Produce large fluence of energetic (MeV) p, d, t, ³He, ⁴He

Can retain significant fraction of this energy upon reaching the ablator

Charged-Particle Fluence in the Shell

Energetic p and d can traverse the shell

At the fuel-shell interface

n	$6x10^{18}$	14.0 MeV
α	$3x10^{18}$	0.4 MeV
p	$1x10^{17}$	2.3 MeV
t	$4x10^{17}$	0.5 MeV
d	$3x10^{17}$	1.2 MeV

Outer surface of ablator

n	$5x10^{18}$	14.0 MeV	
α	~ 0	0	
p	$3x10^{15}$	~50	keV
t	few	~10	keV
d	$1x10^{16}$	~50	keV

Example

Want to measure (p,γ) and (p,α) on unstable waiting point nucleus

Non-thermal charged particle Reactions

- A significant fraction of charged-particle reactions can take place before thermalizing
- Energetic (MeV) cross-sections can be orders of magnitude larger than thermal
- Stopping and Non-Maxwellian component of charged-particle spectrum need to be understood in detail
- Probably need full Monte Carlo treatment of charged-particle transport & reaction

Number of charged-particle Reactions Produced depends on energy & stopping

Stopping Length:

$$L \simeq \frac{2\theta_e^{3/2} E_0^{1/2}}{c_R n_e}$$

Probability of particle with energy E reacting:

$$P(E) \approx n \int_0^E dE' \frac{\sigma(E)}{-(dE/dx)_{shell}} \approx 2 \frac{n\theta_e^{3/2}}{n_e C} \int dE' \frac{\sigma(E)}{\sqrt{E}}$$
to integrate this over

Need to integrate this over energy distribution of charged-particles in the shell

Ratio of density of unstable targets to electrons n the shell $\sim 10^{-5}$ -10⁻⁶

Count Estimates

Dope shell with A (stable) (say 33%)

> A(n,2n)A-11(n,2n)A-2=> ~ 10^{12} produced, if both (n,2n) cross section 1b

10¹⁷ protons at fuel/shell interface <Ep> ~ 2.3 MeV

 $3x10^{15}$ protons make it to outer surface of shell $\langle E_p \rangle \sim 50$ keV

- ➤ Get ~ 10⁵ reactions assuming a 10mb cross section
 - (integration over p spectrum and stopping preliminary)
- >Simplified estimate: $N_p < \rho r > (A-2/A \text{ atoms}) \sigma = 5x10^4 \text{ reactions}$

Up Scattered Charged-Particles Observed at Omega

Stopping Length

$$\frac{d\psi_t}{dE} = \frac{\theta_e^{\frac{3}{2}} \psi_n n_t}{c_R n_e \sqrt{E}} \, \sigma_{nt}(\geq E)$$

Produce p,d,t with E> 10 MeV

Escape the capsule and detected

Emitted charged-particles are Strong constraint on predicted charged-particle transport, stopping, etc.

$$< pr > _{shell} \sim 35 \text{ mg/cm}^2$$

Knock-on tritons at Omega predicted to loose about 3.45 MeV traversing the shell

In reasonable agreement with experiment

Ongoing Experimental Program Beta-Mix

MeV Triton interaction with shell material ~100mb. Observe beta decays of resulting isotopes, after target disassembly.

Ignited d-t Fuel

Main Reactions

NIF: ${}^{9}\text{Be}(t,\alpha){}^{8}\text{Li}\ (\beta^{-}, 840\text{ms})$

⁹Be(t,p)¹¹Be(β-, 13.8s)

Omega: ${}^{13}C(t,p){}^{15}C(\beta^-, 2.5s)$

 $^{13}C(t,\alpha)^{12}B(\beta^{-}, 21 \text{ ms})$

All high-energy β 's \sim 10 MeV

Debris collector & β counter.

DEBRIS COLLECTION CHALLENGES

Need high efficiency and sufficient solid angle.

2900 ns

- Induced radioactivity must be low.
- Must survive the radiation and shock wave.
- Must be able to assay debris fraction i.e., bomb fraction.
- Overcome hohlraum issues

1000 ns

3.5 ns

NIF

(1 m?)

Progress using the Omega Laser Facility

 \triangleright Fielded β -detector with 30 ms recovery

Observed β-decays with half-lives as short as ¹²B

- ▶ Preliminary measurement of 300 μb, ¹²C(n,p)¹²B cross section at 14 MeV.
- ▶ Observed 15 C(2.45 sec β -) from the 15 N(n,p) reaction extracting cross section
- ➤ First debris collection experiments fielded using labeled ¹³C targets.
- ➤ Debris collector mass measurement sensitivity better than 0.5 nanograms.

Reactions in the Hohlraum

- Baseline design is cylindrical
 75%U, 25%Au cocktail
- Wall thickness is $30\mu m$, of which $7\mu m$ is the cocktail
- Possible to use other materials for the wall backing without affecting the yield

 10^{19} neutrons => $\sim 10^{15}$ reactions for 1b cross section $\sim 10^{11}$ for double reactions

Summary

- Fluence of neutrons and charged particles suggest that double and triple reactions produce significant yields
- Reactions of interest very challenging triple reactions maybe too small
- Significant progress being made to develop experimental techniques at Omega
- Can measure reaction products with lifetimes ~ tens msec
- Energetic of charged-particles traversing the shell high
- Need accurate tools to extract the desired thermal cross sections from fluxaveraged measurements
- Reactions in the hohlraum may be a possibility

